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Abstract. Computational approaches based on previous nonlinear theoretical findings are developed for a Compos- 
ite system, the Navier-Stokes system, and the Euler system of equations, in turn, with applications to incompressible 
boundary-layer transition and dynamic stall. The emphasis is on schemes appropriate for medium-to-large Reynolds 
numbers, and so as a start the computations are kept to two spatial dimensions. The Composite scheme is devel- 
oped first, including significant normal-pressure-gradient effects as suggested by the theory. The same scheme is 
then modified to accommodate, iteratively, the Navier-Stokes form and then the Euler form, for comparison. The 
agreement between the three sets of results tends to be very close in the parameter ranges studied. The necessary 
extensions of the work are also discussed. 

1. I n t r o d u c t i o n  

Computational studies of unsteady disturbed flow produced within a boundary layer are 
described in this article, the computations being based on Composite, Navier-Stokes- and 
Euler-equation representations. The potential applications to understanding and prediction of 
boundary-layer transition and to unsteady airfoil computations are uppermost in mind here, 
along with a number of other motivations and issues which are addressed subsequently. These 
include the questions of whether a time-marching computational approach can possibly be 
used as an engineering tool at large Reynolds numbers, e.g. for transition prediction, whether 
in particular a two-dimensional time-marching treatment is able to capture significant aspects 
of transition to turbulence (see also below), and whether the approach can provide any fresh 
insight into transition prediction and transition criteria. Continuing new insight, especially of 
a nonlinear kind as here, is certainly needed in this area of transition and especially for by-pass 
transition processes, which partly form the background for the present investigation; there is 
also much interest in, and connection with, the closely related areas of unsteady separation 
and dynamic stall. Again, it is well known that the global effects of unsteady boundary-layer 
displacement, receptivity, and most of all transition, are often considerable in unsteady airfoil 
oscillations. 

Most aerodynamic interest is in the medium-to-high Reynolds number range, within the 
present contexts. For that reason a Composite scheme, suggested by asymptotic scaling 
theories to a great extent, is applied and tested first, rather than the more conventional Navier- 
Stokes DNS approaches which tend to be restricted to relatively low Reynolds numbers, from 
accuracy and/or cost considerations, or Euler approaches which miss the viscous production. 
This Composite scheme (which tackles a reduced set of equations, as in Smith et al. [1]) 
is then used subsequently as the springboard for an apparently novel NS approach also, 
as well as for an Euler-equation approach, given the advantages of such reduced-equation 
schemes demonstrated in steady aerodynamic computations. Again, there are areas of unsteady 
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aerodynamics, for example in unsteady separation and dynamic stall, where rather leaner 
devoted schemes, which improve with increasing Reynolds number instead of deteriorating, 
also seem to be needed. One might hope indeed to apply the present treatment or its like 
to cover the unsteady boundary-layer flow over an entire airfoil, as opposed to the current 
emphasis on local features; that hope may or may not be far-fetched. The more local treatment 
here however is intended eventually to provide extra data, or alternative data, on transition, 
to compare with the empirical transition rules (e.g. Van Driest and Blumer [2], Dunham [3], 
Roberts [4], Abu-Ghannam and Shaw [5], Narasirnha [6], Van Ingen [7]) and to attempt 
to detect trends on for instance the influences of free-stream turbulence and airfoil-scale 
oscillations. Another aspect to note is that of comparing with recent asymptotic theoretical 
predictions, including the formation of a logarithmic wall layer and local bursting phenomena 
predicted by two-dimensional theory (Smith [8], Hoyle et al. [9], Smith et al. [10]) and the 
possibility of incorporating such more recent theory as further guidance for the numerical 
approach as here. 

The computational approaches developed in the present work, for unsteady boundary 
layers, are suggested by recent theoretical findings ([8], [9] and [11]) and by the computational 
procedures developed in Smith et al. [1] mainly for channel flows. In this last work, good 
agreement between Composite and NS results was found on linear stability features over a 
wide range of Reynolds numbers, even as low as approximately 1/10 of the critical Reynolds 
number for plane channel flow and 1/5 in the Blasius boundary-layer case, and some nonlinear 
features of channel flows were also investigated. Since then separate developments have taken 
place in the use of reduced NS, parabolized stability, and other equations, in a similar spirit. 
The plan of the present work is to concentrate on the nonlinear boundary-layer case and 
follow through the suggestions from Smith et al. [1] (see also [8], [9], [11] and [12]) on 
the modified use of interactive-boundary-layer ideas in the unsteady flow at large Reynolds 
numbers, ideas which have proved successful in the field of steady aerodynamic computations 
for example (Davis and Werle [ 13]). We note in addition that there are a number of interesting 
computations on unsteady interacting boundary layers with zero normal pressure gradient, in 
two-dimensional flow (Smith [14], Duck [15], Henkes and Veldman [16], Peridier et al. [17]) 
and three-dimensional flow (Smith [18]), but the limitations on these with regard to sublayer 
bursting and singularities for instance are shown theoretically in references [8, 9, 11 ]; removal 
of the limitations corresponds to the inclusion of normal-pressure-gradient effects (see last 
references), pointing to the suggestions in Smith et al. [1]. 

The Composite or unified treatment (see Section 2) is intended to solve accurately a 
reduced set of equations appropriate for the large-Reynolds-numbe r flows in question, incor- 
porating especially the viscous-inviscid interactions of Tollmien-Schlichting (TS) waves for 
instance as well as inviscid inflexional instabilities, and including significant normal-pressure- 
gradient contributions. The Composite approach is then used as the basis for the alternative 
NS and Euler approaches (see Sections 3, 4), in which the extra/different terms required in 
the equations are simply added in passively during the iterative routine. A major aim here is 
to compare the results from the various approaches, at large Reynolds numbers (see below), 
and compare their work rates, features which are considered in Section 5. As a start, therefore, 
streamwise (x) periodicity, two-dimensionality and incompressibility are assumed through- 
out, for unsteady boundary-layer flow past a flat surface (y = 0) with freestream unsteadiness 
acting. Extensions are mentioned later in Section 5. Here nondimensionalized velocity com- 
ponents u, v in Cartesian coordinates x, y, time t and pressure p are taken, based on the 
characteristic free-stream speed and on the typical boundary-layer thickness, as is the local 



Navier-Stokes and Euler unsteady-flow computations 309 

Reynolds number R, while the associated global Reynolds number based on the airfoil chord 
is Re(= R2). Since our current interest is mostly in local properties, especially transition, 
the computations are focussed normally within and just outside the boundary layer. This is 
designed to capture much of both gradual and by-pass transitions, the former having the 
slightly longer (TS) nonlinear length scales (theory, Smith [8] for example) at first, whereas 
the latter have length scales comparable with the boundary-layer thickness and smaller (see 
the Euler stage and scale cascades in references [8, 10], Bowles and Smith [19]). Bursting and 
sublayer eruption can also be handled in principle by the Euler- or normal-pressure-gradient 
contributions present, provided viscous effects act also (otherwise bursting is absent): again 
see the theory in reference [8]. Similar comments apply to steady separating flow and stall, 
where again there is a need for local Euler-like regions to be accommodated in the numerical 
procedures: references [8, 9, 11]. Not all of the issues raised above can be settled here, but, 
on one issue, it is found that the Composite, NS and Euler approaches are in good agreement 
at global Reynolds numbers Re of about 107-108 , corresponding to local Reynolds numbers 
R of 6000-12000, for the time ranges and particular disturbances considered. 

2. The unsteady composite scheme 

The governing equations in the Composite approach are the unsteady interacting boundary- 
layer (IBL) equations but supplemented by normal pressure-gradient effects: 

Ou Ov 
+ ~ = O, (2.1a) 

0--~ oy 

Ou Ou Ou _ Op  + R - l  O2u 
O---t + U~x + v Oy Ox Oy 2' (2.1b) 

Ov Ov Ov 019 
Ot + U~x + Fv-~v y = Oy" (2.1c) 

First we consider F zero, as suggested in [1]. Among the main reasons for focussing initially on 
the system (2.1 a-c) are these: it captures the linear and nonlinear behavior of TS waves (lower- 
branch, upper-branch, and in-between) and of inflexional waves to a large extent; it appears 
to reflect also the nonlinear break-up dynamics involved in the unsteady IBL equations alone 
([8, 9, 11]); it allows much of the nonlinear-TS and Euler stages ([8, 10]) to be incorporated 
together; and yet it is simpler than the NS system, as well as pointing to alternative NS 
and Euler treatments, described in the next sections. The boundary conditions on the system 
include 

op 
u --~ Ue(t), O-x -~ Q(t) as y --+ c~, (2.1d) 

u = v = O  at y = O ,  (2.1e) 

upstream -x and downstream -x constraints, (2.1 f) 

together with the initial conditions at time zero. In (2.1 d), Ue (t) is the given unsteady freestream 
velocity, independent of x, with streamwise pressure gradient Q (t) such that u~ (t) = - Q  (t), 
and (2.1e) is the no-slip constraint. More details on the above conditions are given in the 
following, while Section 1 includes mention of the interactive nature of (2. ld). 
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Computational solutions of (2.1 a-c) were obtained by a spectral method, as a starting 
point, with spatial periodicity in x of wavelength 2rr/oL assumed. Thus Fourier series of the 
form 

oo 

(u ,¢ )  = (Uo,¢o) + Y~[(Un,¢n)E n + (~n,~bn)E-n], (2.2a) 
1 

oo 
p = xQ(t) + ~ - ~ n E  n + ~nE -n] (2.2b) 

0 
hold, where ¢ is the stream function and ^ stands for the complex conjugate. Also, the known 
pressure-gradient function Q(t), and the unknowns (uo, ¢o)(Y, t), are real, the unknowns 
(Un, Cn,Pn)(Y, t) for n ~ 1 are complex in general, and 

E ~ exp(ic~x). (2.3) 

So the Composite equations (2. la-c)  yield formally, after some rearrangement, the component 
equations 

un = OCn/Oy[n >1 0], (2.4a) 

[ ] 102un 
Oun Cn Ouo + Pn £n for n/> 1 (2.4b) O---t- + i(ne~) UoUn -- Oy R O y  2 - ' 

OUo 10Zuo 
Ot + Q(t) R Oy2 -- 1:o, (2.4c) 

-i(na) om - - ~  Jr (n°t)2u°~bn q- Oy - ¢~4n for n/> l, (2.4d) 

2-:-~ -~ = .Mo. (2.4e) 
o , y  

Here the contributions on the right-hand sides are given by 

n-1 [ Oun-m ] 

m~--I 

r n = l  

[ Oam-,,] 
+ ~ ( m - n ) u ~ a m - n - m C m  Oy J '  

m = n + l  

i s -  1 f-.n 

ic~-l£o = ~ m \ Oy Oy ] ' 
r n = l  

(2.5a) 

(2.5b) 

n- -1  oo 

m = l  m=n÷l 
oo 

m = l  

(2.5c) 
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- -2Mo = Z m2( r"¢ +  mem), (2.5d) 
m=l  

containing only nonlinear terms. 
A fairly straightforward finite-difference implicit scheme is adopted for (2.4)-(2.5). More 

sophisticated differencing, iteration or other numerical devices could be used at this stage but 
our prime concern is more with the value and accuracy of the Composite-equation approach as 
compared with the others described in the subsequent sections. For (2.4a, b, d) we discretized 
the equations in the second-order accurate (in space and time) form 

l (~nj q- ~Znj-1) = (¢nj - (bnj -1) /AY[  2 < J <<. J], (2.6a) 

2i[5n j - U(n'~ )] + ina[gojgnj - ~)nj(~oj+l - -  ~oj-1)/(2my) "-~ Phi 

-R - l [un j+ l  - 2~Znj + Unj-1]/(Ay) 2 = ~nj[2 <~ j <<, J - 1], (2.6b) 

n 2 ~  2 ~/,~ _ ~ 

~-~ [ ~ j  + ¢ ~ - 1  - - ,d~( o} 
"rn3 Wnj--lJ l -~_ T ( ~ o  j -]- ~oj-1)(~nj -]- ~nj-1) 

~h (o) 

+(Pnj -- P n j - I ) / A Y  = JQnj-1/2[ 2 <- J <- J], (2.6c) 

and similarly for (2.4c, e). Here (o) and (c) denote the values at the (known) previous and 
(unknown) current time levels t, t + At  respectively, ~ the (unknown) average of these 
values, e.g. £z = (u (c) + u(°))/2,  J - 1 is the number of y-steps, with step length Ay, while 
( J  - 1 ) Ay = Y2 fixes the outer boundary, and the subscript j stands for evaluation at (j - 1 ) Ay 
and so on. Analogous differencing is performed on the contributions in (2.5), to produce the 
terms on the right-hand sides in (2.6b, c), where any averaging necessary is done as locally 
as possible, i.e. as in the term involving (nc~) 2 in (2.6c), and tilde variables are used again to 

preserve the order (At) 2 accuracy. With the solution for (¢, ,(o) for all n known at time t, U, P) nj 
a first guess is made for the corresponding unknown tilde values. Then, for each n, (2.6a-c) 
(n/> 1 ) or the counterparts for n zero (see below) are solved together with the constraints 

~2nl = Cnl = 0, (2.6d) 

5 n j  = 0, (2.6e) 

to give updated values of (¢, 72,/~)nj, with the other components Cm, m ¢ n, etc., being 
kept at their latest stored values. This is done in tum for all the n (n /> 0) values and is 
then repeated, until all the successive iterates are sufficiently close in value. So ¢(c) follows 
from ¢(c) = 2¢ - ~(o), etc., and the procedure can move on to the next time step. In solving 
(2.6a--e) for (¢,  ~ t , p ) n  j (n >1 1) the scheme uses inversion of a 3 x 3 block double-diagonal 
matrix. In deriving the mean-flow quantities ¢o, Uo, Q, po during each iteration, on the other 
hand, a slightly different approach is taken, since the counterpart of (2.6b) for n = 0 has ¢oj 
absent on the left-hand side. Thus (2.6b), with Q included, produces a tridiagonal system for 
the (Zoj values subject to 

~ f 0 at j = 1, (2.7a) 

Uoj =-- I /o ~ 1 - Q( t )d t  at j = J, (2.75) 
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IMAGINARY PART OF COMPONENT Pl (AT WALL y=0) VERSUS TIME t 

NOTE THAT CASES (a), (b) CORRESPOND TO 20%, 32% MAXIMUM REDUCTIONS OF 
THE OSCILLATING FREE-STREAM VELOCITY (SEE (5 .1b) ) ,  IN TURN. 
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(a) 

COMPOSITE RESULTS. 
a t = 0.5 
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80 00 
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T 
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-0.03 

(b) 
6000. 4. 0.2. 30. 0.005. 0 
6000. 4. 0.2. 30. 0.01. 0 
6000. tO. 0.2. 30. 0.005. 0 
6000. 10. 0.2. 30. 0.0005. 0 
6000. 10. 0.2. 30. 0.0005. 1 

6000. I0. 2/15. 20. 0.0005. I 

Q ~ =  E] 0 n 

0 

0 

I I I I 
20 40 60 80 100 

~ t  
Fig. 1. Results from the Composite approach of Section 2, for various values of (R, N,  A~/, y2, At, i "~) as shown 
above, with a = 0.2, a;1 = 5 throughout. 

which determines the ~2oj updates; here ~ = t + At~2 and the initial value ue(O) = 1 without 

loss of generality. Following that, the ~oj updates can be obtained marching (2.6a) upwards in 

j ,  given the surface value ~ol = 0; while the remaining equation (2.6c) fixes the mean normal 
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MEAN-FLOW VELOCITY COMPONENT u0, NEAR WALL (y = ~y).  HERE al = 0.8, PARAMETERS 
(6000, 10, 0.'2, 30, 0.005). THE FREE-STREAM FORCING PERIOD 2~/~1 IS ALSO 

INDICATED, FOR COMPARISON 

T 
>,, 

o ::) 

0.2 

0.1 

-0.1 

(C) COMPOSITE RESULTS. 
a 1 = 0 . 8  

FORCING 
PERIOD 

52 53 54 
~ t  

Fig. 1. Continued. 

55 

pressure gradient, or, on integration downwards, the mean surface pressure/5ol effectively, 
taking PoJ as given from (2. ld), (2.2b); (2.6c) is otherwise redundant for n = zero. 

Results for representative quantities are presented subsequently in Figs. 1 and 4 and are dis- 
cussed in Section 5 below. Typical values taken in the computations were IN, Ay, At,  Y2, q] = 
[7, 0.2, 0.002, 30, 10 -6] where N is the number of Fourier modes included and q is the iterative 
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tolerance per timestep. Checks on the influences of the various grid and iteration parameters 
are also described in Section 5. 

The Composite scheme has also been used in this research with F unity, in (2.1c). The extra 
term v Ov/Oy is incorporated in the computational routine by using the 'rolling in' approach, 
during the iterations, as in the work of the next two sections (cf. ref. [20]). Typical results are 
described in Section 5. 

3. The unsteady NS scheme 

Here the new approach to deriving full NS solutions for the unsteady nonlinear boundary- 
layer responses is described, based on the Composite method of Section 2 (with zero F) and 
analogous to the channel-flow approach in [1]. 

The NS equations, for comparison, are 

Ou Ov 
+ -~- = O, (3.1a) 

Ox a y  

O----( + U-~x y Ox + \ Oy 2 + Ox 2 ] '  (3.18) 

a---i + + vav  ov \ o r  2 + o 2J " (3.1c) 

The extra contributions from the terms R-Io2~z/Ox 2 in (3. l b) and v Ov/Oy, R-1 (Or 2/Oy2 + 
02v/Ox 2) in (3.1c), which are omitted in (2.1b,c), are now added to the right-hand sides l:n, 
.Mn [in (2.4b-e)] following the decomposition (2.2a, b). This is done in a passive fashion, 
given that in many situations of interest these extra contributions are only subsidiary parts 
of the physics controlling the nonlinear unsteady flows at large R, according to theory (see 
Refs.). This tends to be borne out by, first, the resulting numerical closeness of the present 
solutions and those from Section 2 and, second, the lack of significant extra work required to 
change from (2.1 a-c) to (3.1 a-c), as discussed later in Section 5. The additions to ia - lEn  in 
(2.5a, b) required here are therefore 

i (na )  2 
c~R Un, (3.2a) 

for n />  0, and the additions to -o~-2.Mn in (2.5c, d) are 

ot2-R" [ OV -- (nce)2¢n/ -- y ~  m(n -- m)¢mUn-m + Y~ m(m -- n)¢mUm-n 
m = l  m = n + l  

o(3 

+ y~ m(m + n)~bmUm+n, (3.2b) 
m = l  

for n />  1. The NS contributions (3.2a, b), discretized in similar fashion to Section 2, are added 
to (2.5a, b), (2.5c, d) respectively [i.e. to (2.6b, c)] at each iteration per time level. In all other 
respects the discretization and routines described in Section 2 are unaltered throughout. 

The outcome of the present NS approach computations is considered in Section 5, together 
with relevant comparisons; see Figs. 2 and 4. The grid parameters used are by and large the 
same as for the Composite approach of Section 2. 
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Fig. 2. Results from the NS approach of Section 3, with (R, N, Ay, y2, At) as shown and c~ = 0.2, w~ = 5. 

4. The unsteady Euler scheme 

The unsteady nonlinear Euler-flow solutions described below are obtained in similar vein to 
Section 3. Again for comparison, the governing equations here are 

Ou Ov 
+ -z-- = O, (4 .1a)  

0--~ a y  

Ou Ou Ou Op 
O----t + u-~x + v -~-y -- Ox ' (4.1b) 

Ov Ov Ov Op 
O---t + u-~x ÷ V Oy Oy' (4.1c) 
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MEAN-FLOW VELOCITY COMPONENT u 0, NEAR WALL (y = &y) ,  AT RELATIVELY LATE TIMES t. 
HERE a t = 0.8, PARAMETERS (6000, 10, 0.2, 30, 0.0005). THE FREE-STREAM FORCING PERIOD 

2w/oJ 1 IS ALSO INDICATED, FOR COMPARISON 

(c) 

NS RESULTS. FORCING 
al = 0.8 PERIOD 

0.2 

0.1 

I c 

il II 
T 

o 

li 

-o.I I I I 
112 113 114 115 

~ t  

Fig. 2. Continued. 

So all the viscous terms, involving R -1, in (2.4a)-(2.5d) supplemented by (3.2a, b), are 
omitted in the Euler computations. Together with this, the number of surface conditions must 
be reduced of course, with only Cnl = 0 rather than (2.6d), but, to compensate, the streamwise 
momentum equation (2.6b) can now be applied at one extra y-point. Again, we choose to keep 
the outer condition (2.6e) here, although the results obtained with other constraints, namely 
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(b) EULER RESULTS. 
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Fig. 3. Results from the Euler approach of Section 4, with (N, Ay,  y2, At)  as shown and c~ = 0.2, wt = 5. 

~nJ or/Snj set to zero, proved to be virtually identical with the present ones. An alteration is 
also necessary for the mean-flow (n = 0) terms, where we integrate 

-~[ (Zo j -U:~)]=~oj -Q( t+-~)  (4.2, 

directly for all the ~2oj values, j = 1 to J ,  after which the ~oa updates stem from (2.6a), given 
~ ol : z e r o .  

The rest of the discretization and iteration routines are maintained exactly as in Section 
2, supplemented by (3.2a, b) with zero R -~ . The grid parameters used are again broadly the 
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Fig. 4. Comparisons between the Composite, Navier-Stokes and Euler results (shown as 0 ,  O , / X ,  respectively), 
computed on typical grids, with a = 0.2, o;l = 5, al  = 0.8. Reynolds number R = 6000 in the first two cases. 

same as for Section 2 except that slightly smaller time steps At  tend to be necessary. Results 
for the Euler equations (4.1 a-c) are presented in the next section, along with comparisons 
with those of Sections 2 and 3; see Figs. 3 and 4 below. 

5. Results, comparisons and discussion 

Results from the Composite approach of section 2 are shown in Fig. 1, while Figs. 2 and 3 
show results from the Navier-Stokes (Section 3) and Euler (Section 4) schemes in turn. In all 
cases the initial values taken are 

Uo = 1 - e - y ,  U 1 = i y [ e x p ( - y  2) - 2exp(-2y2)] ,  

J Un 0 for n / > 2 ,  p n = O  for n / > 0 ,  
(5.1a) 

at t --= 0, with the ~bn values following from (2.4a), and the edge velocity and streamwise 
pressure gradient for t /> 0 are given by 

u e ( t )  = 1 + a l w l l [ c o s ( w l t )  - 1], Q ( t )  = al sin(wit). (5.1b) 

The computations were run for the order of 104-105 time steps, requiring about 5 iterative 
sweeps per time step. The Figs. 1-3 also include some grid-effect studies in terms of the y-grid, 
the t-step and the number of spectral modes, as well as the influence of the local Reynolds 
number R, and the influence of altering F in (2. lc) from zero to unity. The three approaches 
of Sections 2-4 took virtually the same computer time, for a given grid and Reynolds number. 
Again, tests on the accuracy to which the approaches satisfy the governing equations [(2.1), 
(3.1) or (4.1)] were performed as in [1] with broadly similar results: satisfaction was achieved 
typically to well within 1% of the maximum term in the equations, throughout the present 
computations. 

In the results of Figs. 1-3 we observe the spatial mean-flow (n = 0) quantities responding at 
approximately the forcing frequency Wl imposed in (5. lb), whereas the much slower evolution 
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of the spatial first-harmonic (n = 1) property as plotted is of more concern here. This is in 
general agreement with limiting analyses of (2.1), (3.1) or (4.1), e.g. for small times t. 

Comparisons between the results from the three methods of Section 2--4 are presented in 
Fig. 4. These are close overall and tend to encourage the use of the present approaches at such 
higher Reynolds numbers. Indeed, the main cause of any inaccuracy in the computations so 
far would seem to be due much more to grid resolution, including the streamwise spectral 
truncation, than to the differences in three sets of governing equations addressed in Sections 
2-4. That conclusion may be modified at later times, however, when vortex shedding from 
the viscous sublayer near the surface occurs in the Composite and Navier-Stokes approaches 
of Sections 2 and 3 but is missed by the inviscid Euler approach of Section 4. There is a little 
evidence of this in the comparisons above, and we note also that mean-flow reversal does take 
place near the surface, at increased forcing amplitude, accompanied by significant increases in 
the amplitudes of the higher spectral modes. (A similar modification may apply for increased 
wavenumbers o~. Preliminary results have been obtained for o~ values up to 5, with the current 
schemes, and also for surface conditions corresponding to unsteady injection and suction, but 
these have not been investigated sufficiently thoroughly yet with respect to grid-resolution 
effects.) 

A number of other related points should be mentioned here. First, this work on the non- 
linear unsteady boundary layer has assumed spatial periodicity, incompressibility and two- 
dimensionality, as a convenient starting point. Clearly for practical reasons the extensions 
to spatially growing motion, to compressible flows, and to the three-dimensional setting are 
called for, and ideas similar to those in Sections 2-4 do apply in those more realistic contexts; 
see also [19] and below. Second, the procedure for the Euler-equation solver in particular, 
in Section 4, may not be especially efficient, although again there appear to be few other 
methods reported in the literature, for the present flow conditions. Third, comparisons with 
other computational methods and results would be desirable at the higher Reynolds numbers 
of interest for these flows, given that most previous computational studies in contrast tend 
to address relatively low Reynolds numbers. In that regard, the comparisons in [1] for the 
linearized version in the boundary-layer case, at relatively low Reynolds numbers (see in 
Section 1), also provide much encouragement. 

It is felt that the way is now open, in principle, for many useful applications in dynamic 
stall and boundary-layer transition. Some substantial questions remain to be answered; for 
example, on the need for extremely sensitive grid resolution (e.g. with adaptive gridding) 
during vortex eruption and subsequent dynamic stall; on the merits of two-dimensional or 
quasi-planar methods during fully fledged transition as opposed to three-dimensional meth- 
ods (theory in [8, 9, 11] suggests quasi-planar processes might dominate certain aspects of 
transition in its later stages, including vortex eruption); and on the implementation of the 
three-dimensional versions necessary, quite possibly based on the computational studies of 
steady and unsteady interactive three-dimensional boundary layers in [18, 21]. This should 
allow firmer comparisons to be made with experiments on full transition and on by-pass tran- 
sition, e.g. see those in [22]. Throughout, the benefits of a substantial theoretical input seem 
fairly clear in numerical terms. (In particular, for the present contexts, we note the agreement 
found recently between the numerical work of [17] and the theory in [11] concerning unsteady 
interacting boundary layers and their role in dynamic stall and possibly in intermittency during 
transition.) 
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